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1. INTRODUCTION 

1. I HISTORICAL BACKGROUND 

Continuous minimal-variance filtering is a fo rm of 

sequential stochastic estimation, and, a s  such, has  its roots in the 

ea r ly  least-squares  differential  correction schemes for orbi t  

determination. 

orb i t  determination methods can be found in  Deutsch [ 113 and in 

Mowery [3OI. Continuous optimal fi l tering, per  s e ,  dates  back to 

Wiener [ 381, wherein the minimal-variance stochastic estimation 

A fa i r ly  extensive account of the development of 

problem is solved for  the linear fi l tering of stationary random 

signals. F o r  many yea r s  thereafter,  the terms "optimal filtering" 

and "Wiener filtering" were used interchangeably. The first 

investigations into the problem of the optimal fi l tering of nonsta- 

t ionary signals and nonlinear filtering were  reported about a 

decade la te r ;  e. g. , Laning [27] ,  Zadeh [42], Zadeh and Ragazzini 

[43] and Booton [5] ,  The feature common to the ea r ly  fi l tering 

studies is the derivation of an integral  equation for  the optimal 

fi l ter .  In the special  case  of linear fi l tering for stationary s t a -  

t i s t ics ,  the integral  equation can be solved in a useful f o r m  for 

many applications; unfortunately, the same cannot be said for the 

m o r e  general  cases ,  although Booton [5] does re fer  to some 

applications . 

1 
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In 1958::: Wiener [ 391 suggested an approach to solving the 

filtering problem for the general  stationary -s ta t is t ics  case  which is 

mechanizable and has been developed fur ther  a t  M. I. T .  (e.  g .  , Chesler  

[ 8 ] ,  Hause [17], and Schetzen [31])  under Y .  W.  Lee. 

related investigations by Balakrishnan [ 11 and o thers ;  s e e  F i s h e r  

[ 131 for further discussion. However, the nonstationary-statistics 

case  remained essentially unsolved in a pract ical  sense,  until the 

revolutionary works of Kalman [22]  and Kalman and Bucy [23],  

and the pioneering papers  by Stratonovich [ 35, 361, a l l  between 

1959 and 1961. 

There  a r e  

Kalman and Bucy published a pract ical  solution to the opti- 

mal l inear filtering of random processes  with nonstationary s t a -  

t ist ics.  In order  to obtain their  solution, they abandoned the 

nearly f rui t less  integral  equation approach and reformulated the prob-  

l em so that the f i l t e r  is specified by a differential equation which can be 

mechanized on a computer. Because of the utility of the approach the 

t e r m  "Kalman f i l ter"  replaced "Wiener f i l ter"  a s  a synonym to "opti- 

mal f i l ter .  

special  case  of the Kalman fi l ter .  

r igorously valid only for  l inear  fi l tering, even though successful  

nonlinear extensions were developed heurist ically for orb i t  de te r  - 

mination and space navigation programs.  

In fact ,  the finite dimensional Wiener f i l ter  is just  a 

However, the Kalman f i l ter  is  

:%Apparently, the original announcement was made  in 1949 in an 
internal  M. I. T. memorandum. 
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The t rue nonlinear minimal-var iance f i l ter  follows f r o m  the 

suggestion of Stratonovich that the fundamental entity in sequential 

estimation is the conditional probability density function of the 

message process  given the measurement  process .  

to show that the minimal-variance est imate  of a random variable  

given a se t  of measurements  is simply the conditional expectation, 

which, in turn,  is  the first moment  of the conditional density. 

Thus,  if the density is known as  a function of t ime,  so is the minimal-  

variance est imate .  The first efforts to exploit the idea by deriving a 

par t ia l  differential  equation for the density, Stratonovich [ 361, Kashyap 

[24], and Wonham [41I, a l l  contained e r r o r s ,  and the f i r s t  co r rec t  

formulation is due to Kushner [ 261 in 1964, though his derivation is 

nonrigorous and incomplete and contains a mistake in the fi l ter  d e r i -  

vation. About a year  la te r  Bucy [7] published a note presenting an 

alternate and apparently m o r e  rigorous derivation including a der iva-  

tion containing an algebraic mistake for an approximate filter for a 

s ca l a r  example. La ter  the same  year Bass,  Norum and Schwartz [2]  c o r -  

rected Bucy's example and extended the approximate f i l ter  equa- 

tions to the vector case ;  an independent s imi la r  investigation was 

conducted by Swerling [37]. 

a derivation for  a s imi la r  approximation assuming the measu re -  

ments  a re  taken at d iscre te  points in t ime,  and Schwartz and Bass 

[ 3 2 ]  derived a fi l ter  for  a different approximation f rom that used 

by Bucy [ 7 ] .  

It is  e lementary 

In ea r ly  1966 Jazwinsky [21]  presented 

The l a s t  paper in the sequence stemming f r o m  
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Kushner [Z6] is also by Kushner”’ i n  which he points out that the 

derivation by Bucy [7] of the exact filter equation is not completely 

r igorous;  he also proves a theorem giving sufficiency conditions for 

the validity of the exact f i l ter  equation, which is  a total differential 

equation for  the conditional mean. 

There a r e  two closely related works not in  the mains t ream 

outlined in the preceding paragraph: Mortensen [ 2 9 ]  and Fisher  

[ 133. 

integral  equation for a quantity related to the conditional density 

function under fa i r ly  res t r ic t ive conditions. 

too, questions the r igor  in Bucy [ 7 ] .  

Fishe r  is m o r e  like that of Kushner [26] ; he employs nonrigorous 

limiting arguments to construct a partial  differential equation for  

the conditional density, but for a more  general  c lass  of stochastic 

processes  than a r e  considered by the previous authors. 

der ives  a s e t  of f i l ter  equations based on a somewhat different 

representation of the conditional density function; h i s  f i l ter  equa- 

tions contain those in Schwartz and Bass  [32]  a s  a special  case.  

In the f i r s t  par t  of his derivation, Mortensen der ives  an 

In h is  analysis he, 

The approach taken by 

He also 

In addition, there  a r e  alternative approaches to nonlinear 

filtering based on other c r i te r ia ,  for example: Bryson and 

F r a z i e r  [6] , Cox [ 9 ]  , Bellman, Kagiwada, Kalaba, and Sridhar  

[3] , Detchmendy and Sridhar [ 103, as well as o thers  concerned 

with m o r e  specialized problems. 

+Dynamical Equations for Optimum Nonlinear Fil tering: Unpub- 
l ished memorandum. 
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1.2 PROBLEM CONSIDERED 

The problem considered i n  this disser ta t ion i s  the rigorous 

validation of the approximate f i l ter  equations. 

s teps  in the derivation is essential  to s e t  the stage for the follow- 

ing discussion. 

tion is the specification of a mathematical  model;  the choice should 

be made  carefully, since the whole analysis depends upon the 

charac te r i s t ics  of the model. F o r  minimal  variance,  which is a 

probabilist ic cr i ter ion of optimality, the manipulations leading to the 

filter equations a r e  made  particularly simple by assuming that the 

random processes  a r e  white noises. '# 

noise assumption adds a cer ta in  amount of complication in the 

interpretation of the mathematical  resu l t s  in light of reality. 

the present  investigation the white-noise assumption is made. 

If the cr i ter ion of optimality is s ta t is t ical ,  ra ther  than 

An outline of the 

The first s tep in the analysis of any physical si tua- 

On the other hand, the white- 

In 

probabilistic, the white-noise assumption is not germane;  in fact, 

no par t icular  form is postulated for  the random processes .  

The original leas t - squares  estimation is such a statist ically opti- 

mal approach. The recent  studies of Cox [ 9 ]  and Detchmendy and 

Sridhar  [ 101 a r e  modern versions of the statist ically optimal filter. 

The analytical portion of this dissertation does not consider the 

non-probabilistic f i l t e rs ,  but both types of f i l t e rs  a r e  simulated. 

::The definition of white noise is presented in Chapter 2. 
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Given the probabilistic cr i ter ion and the white-noise 

assumption, a natural  mathematical  model is the stochastic dif - 

ferential  equation. Of course,  the problem must be such that the 

stochastic differ ential equation sa t i s  fie s existence and uniquene s s 

conditions, which a r e  different  f rom those pertaining to non- 

s to chas ti c d i f f e r  ential equations. The e s s en tial difference s t e m s  

f rom the fact that for  white-noise models t he re  is no bound on the 

forcing function and global conditions m u s t  be satisfied. 

stochastic differential equations for the sys tem and the m e a s u r e  - 

ment,  it i s  possible to der ive a stochastic par t ia l  differential 

equation for the conditional density function; but there  a r e  no con- 

ditions yet established for the validity of the equation for the density. 

F r o m  the stochastic par t ia l  differential equation in turn,  it is possible to 

derive a stochastic differential equation for the expected value of any 

sca la r  function of the s ta te  of the sys tem;  this l a s t  equation is the one 

which Kushner considers in his unpublished memorandum. Since the 

approximate fi l ter  equations a r e  derived f rom the stochastic differen- 

t ia l  equations for  the expectation, the lack of r igor  in the derivation of 

the equation for the density causes  no r e a l  difficulty. 

F r o m  the 

The exact equation for the fi l ter  requi res  the instantaneous 

evaluation of the conditional expectation of severa l  functions of the 

state of the system. To simplify the problem, the or iginal  model  

can be replaced by an approximating stochastic differential equation, 

f rom which an approximate fi l ter  can be derived m o r e  simply. It s eems  

reasonable to require  that the approximate model equations also 
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sa t i s fy  existence and uniqueness conditions, particularly 

uniqueness; i f  not, the solution to the approximate sys tem m a y  in 

no way approximate the solution to the original problem. Since in 

no previous derivation does the approximation satisfy such condi- 

t ions,  the f irst  par t  of the validation of the f i l t e r  equations is to 

der ive an approximation that does sat isfy the des i red  conditions, 

and to find the resulting fi l ter .  

Guaranteeing existence and uniqueness for the approximate 

sys t em does not quite do the same for  the f i l ter ,  but slightly 

s t ronger  conditions on the equations suffice.  

remains  in the validation: that of relating the stochastic differential 

equation f o r  the f i l ter  to an ordinary different ia l  equation for the actual 

mechanization. In doing so, it is shown that nonvalid fi l ter  equations 

s imi la r  to those previously derived by Schwartz and Bass [ 321 and b y  

F i she r  [ 131 fo r  white-noise processes  can be made  computationally 

identical to valid f i l t e r  equations if mechanized on a digital 

computer . 

At this point, one s tep 

1.3 OUTLINE O F  THE DISSERTATION 

Chapters 2 and 3 a r e  included for completeness,  and m a y  

be skipped without l o s s  of continuity by r eade r s  famil iar  with the 

mater ia l .  

differential equations, the conditions for existence and uniqueness, 

and related topics. Chapter 3 i s  a review of the derivation of the 

f i l ter  equations a s  presented in  Bass ,  Norum and Schwartz [2] a s  

modified by Schwartz and Bass [32]. 

Chapter 2 i s  an outline of the definition of stochastic 
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The new theoretical  resul ts ,  a s  outlined in the preceding 

section, are  given in Chapter 4, while the analysis pertaining to 

the computer simulations and the resu l t s  thereof comprise  

Chapter 5. 

to be exhaustive, in any sense of the word; ra ther  it is an explor- 

atory introduction 

t ics  of and computational considerations for nonlinear f i l t e rs .  

The discussion of the fi l ter  simulations is not intended 

to the ill-defined a r e a  of the dynamic charac te r i s  

The final conclusions and recommendations for  fur ther  

work a r e  presented in Chapter 6. 



2. MATHEMATICAL MODEL 

2.1 INTRODUCTION 

The usual  mathematical  formulation f o r  a dynamical problem 

is a differential  equation, nowadays most  generally writ ten in s ta te-  

vector form:  

where x and f a r e  n-vectors ,  u is an m-vector ,  and t is a sca la r .  

The meaning of (1) is well  known f o r  most  input functions u, but the 

ensuing analysis deals  with white -noise input functions, and 

(1) must  be reinterpreted.  

lems associated with white-noise inputs, and outlines the develop- 

ment  of the necessary  calculus of stochastic processes .  

should be famil iar  with probability theory and random processes .  

The present  chapter explains the prob- 

The reader  

The stochastic calculus began essentially with Wiener in 

the ea r ly  1920's,  although stochastic differential equations were  

first studied by Bernstein [4] a decade la te r .  

t r ibutor  to the theory of stochastic differential equations is It6 [18, 

12,201 , though the present  exposition follows the approach of 

Skorokhod [34]  , which is e a s i e r  to  follow. 

The foremost  con- 

:::See Koval'chik [25]  for further details. 

9 
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The presentation opens with a discussion of white noise 

f rom an engineering point of view to help motivate the subsequent 

mathematical analysis,  which might otherwise s e e m  somewhat con- 

trived. 

measu re  theory a s  much a s  possible despite the fact  that  probability 

theory is often t reated a s  a branch of measu re  theory. 

that the approach used allows the resu l t s  to reach  a l a rge r  audience. 

Also, the various theorems and the propert ies  of stochastic inte- 

grals  and differential equations a r e  stated without proof; the proofs 

a r e  available elsewhere,  and the appropriate r e fe rences  a r e  cited. 

The following mathematical  discussion avoids appeals to  

It is hoped 

2.2 WHITE NOISE 

A typical engineering t reatment  6f white noise can be found 

in Laning and Battin [28]  , P. 136ff, wherein it is stated that a white 

noise is a random process  with a power spec t ra l  density which is 

a constant, o r ,  equivalently, an autocorrelation function which is 

a Dirac 6-function. It is fur ther  noted that such a process  has  no 

physical meaning since it would require  infinite signal power. 

foregoing definition is valid for stationary white noise,  though the 

autocorrelation-function definition can  be  extended to  the nonsta- 

t ionary case by allowing a t ime -varying coefficient for  the 

6 -function. 

The 

The nonrealizability of white-noise p rocesses  is no reason  

to d iscard  them; they occupy a place with respect  to the family of 

stochastic processes  analogous to the place of the Dirac &-function 



with respect  to functions. Jus t  as the 6 -function can pragmatically 

be regarded a s  a limit, in some sense,  of a sequence of uni t -area 

pulses of decreasing width, a white-noise process  can be con- 

s idered  a s  the limit, in a s imilar  sense ,  of a sequence of processes  

which a r e  s tep functions. Moreover, both a r e  useful only when 

the i r  integrals  a r e  considered; indeed, both can be made mathe- 

matically rigorous only in t e r m s  of the i r  integrals.  To be some- 

what imprec ise ,  the &-function may be considered a s  the derivative 

of a unit step; with s imi la r  imprecision Laning and Battin [28] 

show that white noise is the derivative of Brownian motion, which 

they define a s  a one-dimensional random walk. 

The pract ical  reason f o r  being concerned with white-noise 

processes  i s  that, when differential equations a r e  forced by white 

noise,  the solutions a r e  Markov p rocesses ,  i.e., the future is  inde- 

pendent of the past. 

equations forced by white noise exhibit the stochastic analogue of the 

In other words,  the solutions to differential 

property of solutions to differential equations forced by ordinary func- 

tions: given the s ta te  of the solution at some t ime and the forcing 

function f rom that time on, the subsequent evolution of the solution is 

stochastically independent of the previous history.  

The mathematical  problem associated with white noise is 

somewhat s imilar  to that associated with the 6-function: the mean- 

ing of the integral. The 6-function is not real ly  a function in the 

ord inary  sense of the word, and no theory of integration can  r e -  

sul t  in a value other  than zero forJ-m6(t)dt if the 6-function is 
a3 



assumed to be an ordinary function of t. However, by not ascr ibing 

values to 6(t) and considering only i t s  integral ,  i t  i s  possible to con- 

s t ruc t  a meaningful theory.  F o r  example,  s e e  F r i edman  [ 141 p. 136ff. 

Similary,  no  ordinary theory of integration can make sense  of/w(t)dt, 

where w i s  a white-noise p rocess .  Here  again, i f  no instantaneous 

value i s  given to w(t), a useful theory of stochastic integration is 

possible;  that theory is outlined in the following section. 

2 . 3  STOCHASTIC INTEGRALS 

The exposition in this section i s  m e r e l y  an  outline of the 

mathematical  derivation of the stochastic integral ;  and it does not 

include any discussion of stochastic integrals  of discontinuous ran-  

dom processes .  

can  be  found i n  Skorokhod [34]  . 
scr ipt ion of a white-noise p rocess  as the derivative of a Brownian 

motion; the major  difficulty l ies  in the fact  that  a Brownian motion 

is a lmost  nowhere differentiable, a lmost  surely.<'' Thus,  if b is a 

Brownian motion db/dt has  no meaning and /g(t)(db/dt) dt is gen- 

e ra l ly  not defined, even for  continuous functions g. But, i f  db is  

an increment of b ,  it has  a well-defined s tochast ic  description, 

and the Stieltjes integral  

nate fo rm.  However, b is  not a function of bounded variation, and 

even the Stieltjes integral  is not defined. 

is a stochastically meaningful generalization of the Stielt jes integral ,  

A complete discussion of stochastic integration 

The underlying idea is the de- 

4. 

g(t)db(t)  is a possibly meaningful a l t e r -  1 
The stochastic in tegra l  

1 2  

:::In essence ,  the Brownian motion fails to  be differentiable some-  
where  in every interval  of nonzero length, with probability one. 



1 3  

in  which the approximating sums  a r e  required to converge in  

probability to the integral ,  ra ther  than to converge in the ordinary 

sense.  

Fo r  definiteness, consider Jt2 g(t)  dw(t) for  a vector  pro-  

c e s s  g(t)  and a Wiener process  w(t), where a Wiener process  i s  

a unit Brownian motion, i.e., for t > s 

&[w(t) - w(s)]' = t - s; fur thermore,  for q < r 5 s < t ,  w(t)  - w ( s )  

is independent of g ( r )  and of w ( r )  - w(q). Let M denote the class 

& [w(t)  - w(s) ]  = 0" and 

of functions g such that if g is in M ,  then g can be assigned a 

probability; let  Mo denote the set  of step functions in M : let  MI 

denote the se t  of functions in M which a r e  mean-square integrable;  

le t  M2 denote the se t  of functions i n  M which are square  

integrable with probability 1. 

to < t l  < ..- < tn = tf such that g(t) = g(ti)  fo r  ti I t < t i f l .  

such a function it is natural  to define 

If g is in Mo, t he re  a r e  points 

F o r  

J 

i = O  

The integral  defined by ( 2 )  is a linear operation on g. F r o m  the 

aforementioned propert ies  of the Wiener p rocess ,  it follows that 

f o r  g in both Mo and M1 

:::The symbol & denotes expectation. 
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LO L 
0 

The integral  in (2 )  is meaningful only because of the special  

f o r m  of the functions in Mo; the next s tep is to extend the definition 

to a l l  of MI. It canbe  shown'"' that for every g in M1 and every 

there  exists a function; in the intersection of Mo and M1 such 

that 

t > 0 ,  

F r o m  (5),  it follows that for every g in M1, there  ex is t s  a 

sequence {g,} in  the intersection of Mo and MI such that 

lim lttf &lg(t)  - gn(t)l' dt = 0. 
n -a  

0 

But, by linearity and (4), (6)  implies 

*The ver t ical  b a r s  denote the Euclidean norm. 

*:kSkorokhod [34]  , p. 16. 
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and ( 7 ) ,  in turn,  implies that  the sequence of random variables  Jt2 gn(t) dw(t) converges in probability"' to some random variable ,  

which is taken a s  

in M1 is unique with probability one, is l inear ,  and sat is i f ies  

( 3 )  and (4). 

g( t )dw(t) .  The integral  thus defined for g Ittf 0 

The final s tep  in the definition is i ts  extension to a l l  of 

M2. Let f be defined as follows: f (x) = 1 f o r  1x1 5 N and 

f 
N N 

(x) = 0 for  1x1 > N. Then f o r  g in M2, the function N 

is in  M1. It follows'":: that? f o r  N '  > N 

and that 

Thus,  Jttf g,(t) dw(t) converges in probability to some random 

variable  which is taken a s  

proper t ies  ascr ibed  to the previous integrals .  

1" 0 
g(t) dw(t). This integral  exhibits the 

0 

:::A sequence g, converges in  probability to g if the limit a s  n+m 
of the probability that lgn-gl>c is zero f o r  any c > O .  

'kWkorokhod [34] , p. 18-19. 

?The symbol P{ } denotes the probabili ty of the event in the 
braces .  
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2.4 STOCHASTIC DIFFERENTIAL EQUATIONS 

The discussion contained in this  section is l imited to the 

following special  ca se  of (1):  

where x and f a r e  n-vec tors ,  t is a sca l a r ,  u is an m-vec tor  unit 

white-noise p rocess  with independent elements;" and g is an nXm 

matr ix .  

p rac t i ca l  applications. 

i 

by fo rma l  multiplication of (8) by dt and integration of the result ing 

expression, (8) can be rewri t ten as 

.I, 

While (8) i s  l e s s  general  than ( l ) ,  it is sufficient for  mos t  

Let  gi denote the i column of g and wi the 

row of the vector  Wiener p rocess  f r o m  which u is derived. 

th 

th Then 

L m L  
L L .  

x( t )  - x(to)  = / f(s,xjs)) ds t / g'(s,x(s)) dwi(s). (9  1 
t0 i= l  to 

In ( 9 ) ,  the  f i r s t  integral  is an ord inary  integral ,  and the remaining 

m integrals  a r e  stochastic integrals .  F o r  simplicity,  i f  the sto- 

chast ic  integral  equation i s  sat isf ied by a p rocess  x with probabili ty 

one, then (9)  is wr i t ten  in the f o r m  

dx = f(t ,x) dt t g(t ,x) dw(t). (1 0) 

The simplified fo rm (10)  is r e f e r r e d  to as a stochastic differential  

equation, and i s  understood to be  a shorthand notation f o r  (9).  It 

i is assumed that f and all the g evaluated along x( t )  a r e  in  M2. 

*That i s ,  elements of u a r e  der ived f r o m  independent Wiener 
p rocesses .  



The fundamental existence and uniqueness theorem for  the 

analysis in Chapter 4 is a modification of Theorem 4 on page 56 of 

Skorokhod [34]  : 

Theorem. 

and that f ( t ,x)  and gl(t,x) a r e  defined fo r  to 5 t 5 tf and for  a l l  

Suppose that x( to)  is independent of the processes  wi(t) 

- 
n-vectors  x, a r e  measurable'' with respect  to a l l  var iables ,  

and that they satisfy the following conditions: 

1. F o r  every C > 0, there exis ts  an Lc such that 

if 1x1 5 C and Iyl r C. - - 
2. There exis ts  a K a t  which 

m 

i = l  

In such a case ,  (9) has a bounded continuous solution 

with probability one; a l so ,  i f  there  a r e  two solutions, 

with probability one both coincide at a l l  points t. 

The proof is essentially that in the reference;  boundedness s t i l l  follows 

f r o m  Theorem 3, p.51 of the re ference ,  but continuityfollows f rom 

Theorem 3, p.21 of the reference.  F o r  simplicity in the sequel, condi- 

ion 1 is r e fe r r ed  to a s  the local Lipschitz condition, and condition 2 a s  

sublinearity. 

:: Measurability is a regular i ty  condition that functions of engineering 
interest  will satisfy. 
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The next resu l t  is necessa ry  f o r  the derivation of s tochast ic  

differential equations for  functions of solutions of o ther  s tochast ic  

differential  equations. 

in Skorokhod [34] on p. 24ff; the vector  ve r s ion  follows quite simply. 

Le t  x satisfy (10)  for  to 5 t I t f ,  with each  f i ,  gij, and gijgkl belong- 

ing to  M2. If a s c a l a r  function +(t ,x) is defined and continuous and 

has  a continuous derivative with respec t  to t and continuous second 

c r o s s  par t ia l  der ivat ives  with r e spec t  to  the xi fo r  to r  t 5 tf and 

fo r  all x,  then the p rocess  y( t )  = +(t,x(t)) sat isf ies  the relation 

The sca l a r  ve r s ion  of the formula is proved 

where  a (  ) /ax  denotes the gradient ( row) vec tor ,  a2( ) /ax2  denotes 

the Hessian (mat r ix  of c r o s s  pa r t i a l s ) ,  and the a s t e r i s k  denotes 

ma t r ix  t ranspose.  

2.5 RELATION TO THE PHYSICAL PROBLEM 

There a r e  two interfaces  between the physical si tuation and 

The reduction of the mathematical  model i n  the f i l ter ing problem: 

the  dynamics to a stochastic differential  equation and the in te rpre ta -  

t ion and mechanization of the stochastic differential  equation f o r  

the filter a s  a computational algorithm. The second in te r face  is 

considered first. 

the context of the actual  es t imat ion environment is not at all a tri- 

vial  mat ter .  

The interpretat ion of the s tochast ic  in tegra l  i n  

The f i l ter ing algori thm wil l  b e  a finite-difference 
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approximation to (8), with u represented by a sampled 

measurement ,  not a white noise. The problem of the interpretation 

of (8) and the approach to use for  the integration is discussed at  

length in Gray and Caughey [16] ; they specify two approaches and 

propose a l is t  of four pragmatic rules f o r  choosing between the 

two approaches based on the interpretation of (8). Another treat- 

ment of the difference between the two approaches is given in Wong 

and Zakai [40].  

The r e a l  difference between the approaches is in the choice 

of whether to use the ordinary calculus o r  the stochastic calculus. 

In the nomenclature of Gray and Caughey [I61 the f o r m e r  choice 

is the physical approach and the la t te r  choice is the mathematical 

approach. In contrasting the two approaches,  the authors a r e  quick 

to state that neither approach i s  inherently cor rec t ;  the choice 

should be made according to their pragmatic rules:  

1. If  g(t,x) is not actually a function of x ,  both approaches 

provide identical results.  

2. If the problem is  a s t r ic t ly  mathematical  one, the 

mathematical  approach must  be  used. 

3. If (8) is either an approximation to  o r  a limit of the 

discrete  problem [x(tkt l )  - x(t  k ]  ) / (tkt - tk) = 

f(tk9 X(tk)) t g(tk,  x(tk)) u(tk)y then the 

mathematical  approach must  be used. 



4. If (8) is either an approximation to a white-noise 

problem o r  the limit of a problem with shor t  c o r r e -  

lation t ime,  then the physical approach must  be used. 

The computational effect  of the difference between the two 

approaches i s  stated by Wong and Zakai [40] Let 

{w"} be a sequence of piecewise l inear approximations to the 

Wiener process  in (10)  such that wn 4 w; then i f  {x"} denotes the 

a s  follows: 

sequence of corresponding solutions, xn + z, where z is the solu- 

tion to 

They s ta te  some reservat ions about the cor rec tness  of (12)  in the 

vector case,  but the same form is implied by the resu l t s  of Gray 

and Caughey [16]. 

There is also a problem in relating the s ta t is t ics  of the 

r e a l  data t o  the s ta t is t ics  of the white noise used in the model; this 

problem exists at  both interfaces ,  and is rea l ly  the only one at the 

first. For simplicity, consider the following special  case:  Let 

u( t )  denote a sequence of pulses of width A t  and of random height 

given by a Gaussian distribution of zero mean and var iance cr 2 . 
The autocorrelation function for u is a t r iangular  spike of width 

2 A t  and height r2; the a r e a  under the spike is then cr2At. It then 

20 
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seems reasonable that the equivalent white noise be specified by 

an impulse of weight (r24t. The foregoing conclusion can also be 

implied f o r  m o r e  general  situations by  considering the limit pro-  

c e s s  of a sequence of Markov chains? fo r  example, see 

Skorokhod [34] , Chapter 6. 

an  n-dimensional white noise is  given by a covariance of the f o r m  

S( t )6  (t- T ) ,  an n-dimensional pulse- sequence approximating the pro-  

c e s s  should be chosen f r o m  a population given by a covariance of 

S ( t i ) / A t  f o r  ti 5 t < t i t  A t .  

d i rec t ,  though an equivalent formulation can  be  obtained by using 

the concept of a correlation time T ,  which is a t ime interval such 

that u(t)  can  be  considered uncorrelated with u( t  t T). 

The general  resu l t  is a s  follows: If 

The case  of continuous u is not quite so 

Since the mathematical  model is constructed under the 

assumption that the Wiener process  has  independent e lements ,  one 

final s tep is required to model a noise with cor re la ted  elements.  

Let  S(t)6(t - T )  be the des i red  covariance, which implies S(t)  is 

positive semi-definite for  a l l  t. Then 

m a y  be taken a s  symmetric)S1/‘ such 

dv 2 S1’2dw, the white noise derived 

there  exis ts  a matrix(which 

1 / 2  1 / 2  that  S (S )*’* = S. If 

f r o m  v has  the proper  co- . I ?  

variance.  

is incorporated into g(t ,x),  and the fo rma l i sm of (8), (S),  and (10) 

is still valid. 

F o r  notational simplicity it may  be assumed that SI’ ‘(t) 

::Random sequences exhibiting the Markov property.  
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It should be mentioned, in  conclusion, that  the s t rong  

conditions for existence and uniqueness a r e  requi red  by the mathe-  

mat ica l  model for  white noise,  and not by the equations fo r  the 

actual physical situation. 

local conditions suffice. However, a s tochast ic  differential  is 

forced by functions that cannot be bounded, and global conditions 

a r e  required. 

F o r  an ord inary  differential  equation, 



3. REVIEW OF PRESENT APPROXIMATE 
FILTER EQUATIONS 

3.1 INTRODUCTION 

In this chapter,  the derivation of the f i l ter  equations in 

Schwartz and Bass  [ 3 Z I  i s  outlined, using the approach of Bucy [71 

to obtain the formula for  the exact es t imator .  BUCY'S approach is 

used because it provides a good example of the use  of the stochastic 

calculus. This chapter is included for completeness,  since some 

of the work is not easily accessible. In par t icular ,  BUCY'S note is 

quite sketchy and the repor t  by Schwartz and Bass  was not widely 

distributed. 

The derivation consists of two separate  par t s :  the f i r s t  par t  

t r ea t s  the exact estimation problem, and the second considers the 

development of pract ical  approximate es t imators .  

mathematic r igor  of the second pa r t  a r e  defer red  to Chapter 4, 

where the new theoretical  results a r e  presented. 

The questions of 

3.2 PROBLEM STATEMENT 

Let the dynamic equation of the sys tem be given by (8), and 

le t  the measurement  be given by 
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where h is  an P -vector,  I 5 n, v i s  an I -dimensional unit white 

noise and r is a nonsingular symmetr ic  I X P mat r ix  re lat ing the 

unit white noise to the modeled white noise (equivalent to  the ma t r ix  

S1’2 in Section 5 of Chapter 2).  Since the  mathematical  model can-  

not handle white noise direct ly ,  it is assumed that the measu remen t  

is derived f rom a p rocess  z given by 

dz = h ( t ,  x(t)) dt  t r ( t )  db(t)  (14) 

where b i s  an P -dimensional Wiener p rocess .  The mathematical  

model of the sys t em consis ts  of the two vector  equations (10) and 

(14). 

x( t )  given the process  z ( s )  for t 

ma te  x ( t )  such that the ma t r ix  given by 

The problem i s  to find the minimal-var iance es t imate  of 

5 s 5 t ,  that is to find the e s t i -  
0 

A 

& (x - X)(x - ,):> - &(x - A x) (x  - A x)  ::: 

is positive semi-definite,  where X is any es t imate  of x, and the 

p rocesses  a r e  evaluated a t  t .  

It i s  a s imple exerc ise  to show that the minimal-var iance 

es t imate  of a random variable  given a related quantity is s imply 

the conditional expectation, so that 

and the problem is to find an equation for  the conditional 

expectation. 



25 

3.3 STOCHASTIC DIFFERENTIAL EQUATION F O R  
THE CONDITIONAL EXPECTATION':' 

The approach adopted for  the derivation of the exact f i l ter  

equation requires  the existence of the appropriate conditional proba- 

bility density function p (x(t)(  z (s ) ,  to 5 s 5 t ) ,  which, for simplicity,  

is denoted p(x I z). Let p(xl zn)  denote p(x(t)  1 z ( s l ) ,  z (s2 ) ,  . .. , z ( sn ) )  , 

where no particular order ing is assumed among the s.,  but each s i  

is in  the interval [ t  

1 

t]; the expression for p(x I z )  i s  found a s  
0, 

lim p(x (  zn). The f irst  s tep is to show that the l imit  makes sense.  
n + O D  

A Let  5, = &(a I z(s,),z(s,), ... , z(sn) )  , for some random 

variable  a assuming & ( a )  exists.  It is shown in Doob [121, p. 293,  

that  the random variables 5 5 a constitute a martingale':"':"; 

fur thermore ,  by Theorem l . l( i i)  of Chapter VI1 in Doob, the random 

variables  I c l l ,  1 €,, 1 , ... , 1 a1 form a semi-mart ingale .  Assume that 

x ( t )  is bounded with probability one, and let  a = x(t) ,  then € 1  cnl i s  

uniformlybounded. ByDoob, Chapter VII, Theorem 3.1 ( i) ,  € 1  5, 1 5 
& IE2l 5 .* '  , so that the sequence ( E ]  

1' 2 ' " '  

} is bounded and monotone, 

. By which implies that t h e r e  exists a K such that lim 
n- 

Doob, Chapter VII, Theorem 4.1, 

bil i ty one and E 1 5 K. 

€lcn1 = K< 

exists with proba- lim C n  = 
n d c o  

Now, let A be  a Bore1 set  in a Euclidean n-space and let  

Q A  denote the set  of elementary events w such that x( t ,  a) is in A. 

':'This section m a y  be skipped without loss  of continuity by 
r e a d e r s  not interested in the mathematical  details  of the derivation. 

*"For the definition and 
mdtingales ,  s e e  Doob [12 f , Chapter VII. 

roperties of mart ingales  and semi-  
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.lr 

Let I denote the indicator of 52 then-'. A A; 

Let  5, denote the right hand side of (16). Since I is e i ther  z e r o  o r  

one, 0 I 5, 5 1 and lim 5, = 

and one. 

the left-hand side converges a s  n-a. Then, i f  the conditional 

probability m e a s u r e s  have densit ies p(x I z ), p(x I z )  exis ts  with 

probability one i f  the  l imit  of (1 6)  has  a density. 

A 

exis ts  as a number between z e r o  n -00 5 3  

Thus, (16) ' implies  that the sequence of probabili t ies on 

n 

The existence of the densi t ies  is guaranteed by the fact  that  

the noise on the measurement  i s  a non-degenerate P -dimensional 

white-noise process ,  a s  is demonstrated by the 

tion. The Bayes'  ru le  for  conditional densi t ies  

following cons t ruc-  

is 

Note that  p(zn I x)  p(x) = p(zn, x )  and that  both p(zn) and p(zn, x )  can 

be computed f r o m  p(zn, xn) = p(z(s,) ,  ... , z(sn) ,  x(sl) ,  . . .  , x(t))  , 

where now it is  assumed that t = s < < s = t. Indeed** 

A 

0 1 n 

Wee  Doob [ 121 Chapter I, Section 7. 
Y6*Rn is Euclidean n-space.  
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Also,  

P(ZnY Xn) = P ( Z n l X n ) P ( X n ) .  

F r o m  the definition of stochastic integrals  and (14) 

’i ‘i 

S i  -1 S i  -1 
Z ( S i )  - z(si - l  ) = [ h(t, x( t ) )dt  t [ r ( t ) d b ( t )  . 

A A Let Az. = z(s  

Then 

) - z(si ) ,  Ab. = b(sit l)  - b(s i ) ,  and As = s - s.. 
1 it1 1 i i t 1  1 

Azi  = h(si ,x(si))Asi t r(s . )Ab.  1 1  t di , (21) 

where  6 .  is implicitly defined by requiring the right-hand s ides  of (20)  

and (21 )  to be equal. An expression f o r  p(x 1 z )  can be derived under 

the assumption that 6. is o(As.); the validity of the resulting expres-  

sion can then be verified. 

1 

1 1 

F o r  simplicity, let h .  4 h(si, x ( s i ) ) ,  r i  e r ( s . ) ,  and 
1 1 

z. z(si) .  Then ignoring t e r m s  of o ( A s . ) ,  
1 1 

P(Z1 = Z1’ z 2  = z2, ... , zn - - zn 1 xl= X1’ x2  = X2’ . . . , xn = x n 

= p(zl= Z1, . . . , zn=  Zn -1 t hn -lAsn-l  t rn-lAbn-l 1 x1 = X1, . . . , xn = X n )  



28 

S i n c e  z i s  i ndependen t  of the Ab. and  s i n c e  the Ab. are  i n c r e m e n t s  

of a Wiene r  process,  (22 )  c a n  be r e w r i t t e n  as 

1 1 1 

n -  1 

w h e r e  

- 1  2 - 2  
\ r i  (Azi  - hiAsi) l  = Az:ri Az. 1 

- 2hi"ri2Az 

J, - 2 2 t hi*'.ri h iAs .  1 

A s i  . 

Subs t i tu t ing  (24 )  in to  (23) ,  the r e s u l t i n g  e x p r e s s i o n  in to  (19) ,  and  

u s i n g  (18) provides 

Az . : ' :~ -~  Azi]) 
x 1 i i  

P(Z,,X) = Phi) As i  

n- 1 n -  1 
J. - 2 :;: - 2 

h."*r. 1 1 1  h. A s .  1 t 2 hi ri 
1 =  1 i =  1 

Let 

n - 1  n - 1  
4. - 2 

@n -; 2 h:r:2hiAsi 1 t 1 h:r. 1 1  Azi  . 
i =  1 i =  1 
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By definition the integral  in (25) is simply &(eQn\,) ; whence, 

using (25), (18), and (17) ,  

Since an-- Q in probability, 

t 

b -1 Jh'''r-'h ds  + 
2 

it is tempting to postulate that 

where 

t 

where  the expectations a r e  now functionspace integrals over the se t  

of functions (x( t )}  . 
cussed  in Koval'chik [25] and in Shilov [33I ,  although for  present  pur-  

poses  a m o r e  specialized paper by Getoor [ I51  is m o r e  to the point. 

Specifically, he constructs  the conditional expectations in (27) for  a 

c l a s s  of functionals that includes e@ i f  

solution to a stochastic differential equation, boundedness conditions 

a r e  given by the theorem in Chapter 2. 

The theory of functionspace integration is dis-  

is bounded. Since CP i s  a 

For the derivation of the par t ia l  differential equation for  the 

density, the equality in (27) may b e  relaxed; a l l  that  is needed is 

that (27)  holds in the following sense: 
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F o r  a rb i t r a ry  E > 0 

'n Consider  the following plausibility a rgument  fo r  (28): l e t  q(x I 
denote the right-hand s ide of (26 )  and q(x I z )  denote the right-hand 

s ide  of (27).  Then 

It has  a l ready been established that p (x l zn )  -. p(x1z) with p roba -  

bility one by a mart ingale  argument.  Moreover ,  the r e su l t s  in  

Getoor [15] imply q(xl 

show that q(xIzn)  -.) p(x lz  ) in probability. 

- q ( x l z )  in probability. It r e m a i n s  to Z n )  

n 

If the t e r m  6. in (21) is not neglected, (24)  becomes 
1 

Irf 1 (Az i -hAs i -  6.)12 = ~Iz'!r:~Az. t h'!r:2h.As2 t 6 r r f 2 6 i  
1 1 1  1 1 1 1  1 

( 3 0 )  
-2  

1 - 2 h r r i  AziAsi - 26'!r12Az 
1 1  

t 26?r:'hiAsi 1 1  . 

which resu l t s  in a new functional fo r  ( 2 6 )  

1 1 i =  1 i =  1 i =  1 
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The desired resu l t  obtains if  Xl? 

Substituting (21) into (31) provides 

-r 0 in probability a s  n--co. n - % 

i =  1 1 i =  1 1 

Now, f rom the definition of the stochastic integral 

F r o m  ( 3 3 ) ,  the independence of the 6 and the uniformity i' 

of the convergence of (21) to (ZO) ,  it s eems  reasonable that (32) 

vanishes in  probability, although no d i rec t  proof is apparent in 

the  l i terature .  As noted earlier", the manipulations result ing 

f r o m  the assumption that (28) holds have been rigorized by 

Kushner,  so that it is not necessary to verify directly that ( 3 2 )  

does indeed vanish. 

The next s tep is to formally derive an expression for the 

stochastic differential of p(x  ( z ) .  Following Bucy [7], l e t  

p(x1z) = Q/P. Also, l e t  8 = €(e Ix). Then Q is explicitly a func- 

tion of 8 and p(x),  and 8 i s  explicitly a function only of a random 

process  given by 

A A @  
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In addition p(x( t ) )  is a function of t,  while x ( t )  and z a r e  a s sumed  

fixed. Then, using (11) and ( 3 4 )  

( 3 5 )  

Now, 

- 
where 9 is the forward diffusion opera tor  

I i =  1 i , j = l  

Also 

Substituting ( 3 6 )  and ( 3 8 )  into ( 3 5 )  provides 

dQ = S Q  dt t Q(h''r-2hdt t h'"cr-' db) 

= f Q  dt t Q h ' ' ~ - - ~ d z  . 
(39 )  
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Using (18) and (15), and the definition of Q / P  

d P  = d(/ Q d x ) =  /- (dQ)dx 

Rn Rn 

Finally,  using (11) with x A = (P-',Q)", CJI A =QP -1 , f A = (-p -lA Hkr - 2  ( h - h ) ,  A 

-1 Q 
P d (p )  Q -  - ei%, t h"r dt t h':'r (p )  db 

A A 
= S ( F ) d t t  - Q  (h -hpr  -2( g) (dz - h d t )  . 

At this point all the operations on Q / P  have been formal ,  assuming 

that the conditional density has the necessary  differentiability. 

Actually, (41) will be used only in t e r m s  of its integral, and the 

r igorous conditions of validity need be applied only to the integral ,  

which is the stochastic differential equation for  conditional 

expectations. 
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Let be any scalar  function, twice continuously differentiable 

in x: 

and 

Subs ti tu t i  (41) into (42) provides 

A 
(43) 

d$ = d~(x)(!?p(xlz) t (h-h)':r A -2 p(xIz)(dz - h d t ) ) d x .  

Rn 

Let  2 denote the formal  adjoint of 

Then (43) becomes 

In Kushner 's  unpublished note, he p re sen t s  a proof showing 

F o r  the p u r -  that under cer ta in  assumptions" (45) is meaningful. 

pose of this dissertation, (45) can  be considered only formally 

cor rec t .  

approximate fi l ter  is derived. 

In any case ,  (45) is the key equation f r o m  which the 

*' 12 of them! 
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3 . 4  APPROXIMATE FILTER EQUATIONS 

A The use  of (45) as a differential equation for x resu l t s  in 

A A A A A  - A 
dx i = f . d t t  1 ( x i h - x . h ) r  1 2 ( d z - h d t )  , 

A A  n 
which i s  not very  practical  because f i' 1 

tinuously. As the first step in the approximation, l e t  f and h be 

approximated by a second-degree expansion about x = x; also, for 

h, and x.h a r e  needed con- 

A 

notational simplicity, suppress  the explicit appearance of t a s  an 

argument of f ,  g, and h, since their  dependence on t ime is inciden- 

t a l  to the following manipulations. Then, adopting the summation 

conv ent ion 

f i (X)  = f i ( X )  A t f! .y2)(Xj -x.) A t A f ! 2 ' ( 2 , ( X j  - x j ) (% A -%) ,  A (47) 
1 J  J 2 1Jk 

(2 )2  a'f.1ax.a . A s imi la r  expression where f!f, 6 af,/ax. and fijk 
1J J 

holds for  h. F r o m  (47) 
1 J %  

A A A A 
f i ( X )  = f i (X) t J - f F  2 ijk ("̂ ""j - X j ) ( r ,  - \ )  

A 
A A where (x. - x )( - x ) is the conditional covariance of x and i s  

denoted P.. . Similarly 
J j %  k 

1J 

A 

1 J  
(49 

Using (48) and (49) for f and h in  (46) provides 

A A 
dxi = f i (x)d t  t i f !2)( i )P 2 ijk jk dt 

(50) 
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The next s tep is  to find a different ia l  equation for P. 

In general, even with a second-degree expansion fo r  the nonlinear- 

i t ies,  an  infinite sequence of differential equations i s  required,  

because all the moments a r e  needed to descr ibe  the conditional 

density. 

the sequence stops a t  P. 

is that third and fourth central  conditional moments  be neglected. 

In Schwartz and Bass  [32I, it  is shown that the assumption i s  

reasonable for a distribution with most of the probability m a s s  suf- 

ficiently close to the mean. If i t  is assumed that p(x 1 z )  i s  Gaussian, 

the sequence also stops at  P ,  and there  is no restr ic t ion on the 

s ize  of the moments. 

J- -3. 

However, by assuming an appropriate form for p (x lz ) ,  

The f i r s t  assumption, used by Bucy [7] , 

A A A  
Since P.. can be writ ten (x.x -x .x . ) ,  dP.. i s  derived in two 

13 1 j  1~ 13 
n 

1 J  l 3  
par t s .  Let = X . X .  and use (45) to find dx.x.. Since 

2 x . x .  = f .x.  t f.x.  t g g 
i j  J 1 i k j k '  1 3  

i t  follows that 

n n n 
dx.x = f.x. dt t f .x .  d t  t g / g \  dt 

1 j  1 3  3 1  ik jk 

A A A  - 2  A 
t (x.x \- X.X. \ )  rkp (dzp - hp d t )  . 

l j  1 3  

'$ Equivalently, quasi-moments may  be used, s ee  F isher  [13]. 
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A A  Next, l e t  + = x.x and use ( 1  1) and (46) to obtain 
l j  

A A  
A A A A  - 2  a (x.x .) 

A A  
dx.x = >Pk dt t (\ha - \ha ) rem (dz, - hmdt)l 

1 j  8% 

Combining (51)  and (52)  provides 

A A A  e A A  A 
dP.. = ( f . x .  - f . x .  t f .x - f . x .  t g g ) d t  13 i j  i j  j i  1 1  i k j k  

A A A  - 2 -  A A  
- (x i \ -x i%) r  kf (x .h j f  - x h  j f  ) d t  (53)  

n A  A / \  A- A A A  -2  A 
+ ["';'"k - x i j k  x h - x j \xi - x.h i k j  x .  t 2x.x.h i j k  ]rka(dzf - he d t )  , 

which is an  exact  equation. 

of (53) is a tedious algebraic exerc ise ,  and i s  covered in Bass ,  

Norum and Schwartz [ 21. F o r  completeness,  s eve ra l  intermediate 

r e su l t s  follow: F o r  e i ther  assumption about the conditional density, 

The derivation of the approximate fo rm 

F o r  the f i r s t  assumption, 
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F o r  the other assumption, the right-hand side of (54) is 

( 2 )  ( C )  . (55) 
-(P 1 P 
2 i P  mj ' PimPli)hktm 

F o r  simplicity, le t  the t e r m  in parentheses  in (55) be denoted by 

T.. Then, i f  gg'" is a lso expanded in a second-degree approxi- 
ijke ' 

mation, the following equations a r e  obtained: 

4, 

where (56)  u s e s  (54) and (57)  uses  (55). 

The problems associated with the above formulation for  the 

f i l t e r  equations a r e  discussed in the next chapter.  



4. DERIVATION O F  VALID FILTER EQUATIONS 

4.1 INTRODUCTION 

This chapter begins with a c r i t i ca l  re-evaluat ion of the 

approximation procedure used in Chapter 3 to generate  the f i l ter  

equations. 

the result ing f i l t e r  equations a r e  unsat isfactory f r o m  the stand- 

point of mathematical  validity. 

is made which resu l t s  in a s e t  of f i l ter  equations that a r e  valid in 

the sense  that they satisfy existence and uniqueness conditions ( i f  

the  sys t em nonlinearit ies satisfy cer ta in  assumptions)  and that 

they a r e  derived f r o m  an approximate sys t em that a lso sat isf ies  

t hese  conditions. The new equations, which contain a pa rame te r  

k such that they a r e  valid for  any k > 0, and a r e  a lmost  identical 

to the previous equations when k = 0; this  fact  leads to a definition 

of computational validity which is satisfied by a slightly modified 

vers ion  of the previous equations. 

No  ma t t e r  how rigorous the derivation i s  through (45), 

A modification to  the approximation 

4.2 CRITICISMS OF PREVIOUS DERIVATIONS 

The f i r s t  s tep in the approximation procedure  is the rep lace-  

ment  of the exact sys t em model by a power s e r i e s  expansion about 

39 
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the instantaneous value of the conditional mean.  

differential equation cannot satisfy the conditions of the existence 

and uniqueness theorem given in Chapter 2, because a polynomial 

of degree 2 o r  m o r e  i s  inherently not subl inear .  

p roblem in i t s  p roper  perspective,  i t  should be noted that the con-  

ditions of the theorem a r e  only sufficient conditions, and it is not 

c la imed that they a r e  necessary .  

f r o m  the white-noise model; i t  i s  not inherent  i n  the physical 

problem. However, given that  the original mathematical  sys t em 

equations have a unique, bounded, continuous solution with proba-  

bility one, it i s  highly des i rab le  that  the approximate s y s t e m  a lso  

exhibit the s a m e  charac te r i s t ics .  

For  the  fi l tering problem, uniqueness in any of the equations 

The resul t ing 

To put the 

Moreover  the problem s t e m s  

is m o r e  than a desideratum, it is a necessi ty .  

sys t em of equations with a given se t  of initial conditions can be  

satisfied by an  infinitude of solutions, in what s ense  can a solution 

be  considered an approximation to the solution of the  or iginal  sys -  

t e m  with the s a m e  initial conditions? Obviously, then, it i s  neces-  

s a r y  to guarantee the uniqueness of the solution of the approximating 

equations. Moreover ,  fo r  the s a m e  reason ,  i t  is equally necessa ry  

to guarantee that the f i l ter  equations themselves  posses s  a unique 

solution, while the present  f i l t e rs  do not sat isfy the present ly  

known existence and uniqueness conditions. 

If the  approximate 



4.3 MO DIFIE D APPRO XIMA T IO N 

The first requirement  noted i n  the previous section i s  that  

the approximate sys tem equations satisfy existence and uniqueness 

conditions. One difficulty a r i s e s  in relating the fi l ter  equations to 

a set of sys tem equations: 

power s e r i e s  to obtain the equation for d P  may  not correspond to 

any r e a l  coefficient mat r ix  for dw in  an approximate equation for dx. 

To avoid the aforementioned difficulty, a l inear  expansion for g in 

the system equation i s  assumed. The change in the approximation 

to g is the slight modification alluded to in Section 4.1. The effect 

of the change can be inferred from the following: 

A 
expansion of gg" about x is given by 

the expansion of gg':' in a second-degree 

the quadratic 

where a s  the product of the linear approximation 

9 

to g is  

(1 1 F o r  simplicity, l e t  ag . . / a \  be denoted by g. .  ijk * 
1J 
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To meet  the existence and uniquess conditions, the 

following expansion'" i s  suggested to replace (47) ,  f o r  k > 0: 
d, 

A 1 ( 2 )  A A A A 2  A -k I x-x I [f!1 )($)(xj - x. ) t - f . .  (x)(x.  -x. )(xi -xn)] , (58) ft((x) = fi(x) t e 
1 1J J 2 1JP J J  

plus the following expansion for g: 

A A 2  k A -k lx-x(  (1)  A 
gij(x) = g. . (x)  1J t e gije o(x,- X e )  

Clear ly ,  8 and gk a r e  sublinear and satisfy a local Lipschitz 

condition, therefore  the approximate joint s y s t em 

(59)  

sa t i s f ies  existence and uniqueness conditions. Note that (58) 

approaches (47) a s  k - 0, so that the approximations can  be made 

a rb i t r a r i l y  c lose to each other,  in  a sense  that is  made prec ise  

later in  this chapter.  

The f i l ter  equations, der ived in  the coming section, a r e  

based on the assumption that the conditional density may be ade-  

quately approximated by a Gaussian density. 

A * Note: (47) and (58)  a r e  c lose in  a neighborhood of x, but have 
different asymptotic behaviors.  
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4.4 MODIFIED FILTER 

The following definition will be useful in the derivation of 

the f i l ter  equations: 

m 
exp [ - i ( x  - x )  A ::: P - l ( x - ~ j  -k/  x - 2  l 2  A 

dx . (61) 1 / 2  
e j - e  ( X i  - x i  ) 

Rn j = 1  j j ( 2 7 ~ ) ~ '  2 (  det P ) 

The right-hand side of (61) can  be wri t ten as 

-1 -1 exp [-$( x -2 ) ( 2k In t P -' ) (x -2 3 
A 

[det (2kIn t  P ) 3 
j 'j (27~)~/ ' [de t  (2kI t P  -1 ) -1 J 1/2dx n j = 1  n 

R (det P )  1 / 2  

so  that the tensor  whose components a r e  given by (61) 

-1 /2 ] pm[(2k1 0 n tP- ')- ' ]  . ( 6 2 )  

For  simplicity,  l e t  P k A  = p 2 (P) and ck A = [ d e t ( 2 k P t  I )] -1 /2 . 
k n 

The basic  s teps  in deriving the f i l ter  equations a r e  those 

outlined in Chapter 3. F r o m  (58)  and (61) 

A A 1 (2 )  A k 
f i ( X )  = f . (x )  t - f . .  ( x ) P  

1 2 1Je ja 
and 

x . f . (x)  A =: f(l)(2)Pk t x.f . (x)  A A  . 
l j  l J  1 J  9 
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Then (50)  becomes 

A A 
dxi =. f i (x)dt  t ;f!2)($)pk 11 Q iQ dt 

t P. .h  k (1) (x)rlm[dzm A - 2  - ( h m ( x ) t - h  A 1 ( 2 )  A k 1J Q j  2 mnp(x)Pnp 
- _- 

To compute Pk, which is  needed for (65), note that ( 6 2 )  implies 

1 

Pk = [de, (2kP t I n )]-'(2kI n t P) - '  . 

Thus, it suffices to compute P, a s  before. 

The derivation of the expression for d P  also follows the 

The new pat tern established in Chapter 3, and (53) st i l l  holds. 

expression for (55) is  

To prove (67), the following manipulations a r e  useful 

But it is shown in  Laning and Battin [28] p. 83 that 

( 6 9 )  
2 2 2 2 2 2 

1J P9 19 PJ 0 1P 
= [cl0I..[p 1 t [pol. [p 1 . t [p 1. [polpj , 

- 1  -1 where the argument, (2kI t P ) , has been suppressed. 
n 
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Also 

p2 LZkI t P-’)-’] = ck - 1  pk 2 (P) 
0 n 

Repeated substitution of ( 7 0 )  into (69),  and substitution of (69)  into 

(68 ) provides 

A A A 
(Xi - x.)(x.  - x.)(x - x )(xm l J J a e  m 

P.k) . - -1  k k k k  - ‘k plm ‘iiePjm pim 

The remaining manipulations a r e  straightforward, but tedious. 

Fo r  simplicity, l e t  the bracketed factor in ( 6 7 )  be denoted 

The modified vers ion of (57) i s  then Tk 
ijpq’ 

k (1)  A ( 1 ) A  k 
13 14 J &  (3 

dP.. = P. f .  (x) dt t fie (x) P . dt 

z c k  -’ Tijlm h(’) nlm ( A  x, rnp - 2  [ d z p - ( h p ( ~ ) t ~ h ( z )  2 Pqr ($)Pk q r  )dt]. 

To determine if the f i l ter  system (65) and (72) sat isf ies  existence 

and uniqueness conditions, it is convenient to recas t  the equations 

in  the form of a single vector equation, as follows: 
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Let  s be the vector of dimension n(n t 3) /  2 with components 

definedby s i = x .  for i=1, ..., n; and s . = P  
1 1 P9 

for q = 1, ... , p; p = 1, ... , n. 

element of x and each  nonredundant e lement  of P. 

venient to use the notation s in  place of s for  i > n. The f i l ter  

sys tem can then be rewri t ten in the fo rm 

A 
where i = q t n p - p ( p - 1 ) / 2  

It i s  ea sy  to verify that s contains each  
A 

It is more  con- 

Pq i 

( 7 3  1 
k k ds = a ( t , s ) d t t  b ( t , s ) d z  , 

where,  restoring t a s  an explicit argument,  f rom(65) ,  f o r  i=l, . . . ,n 

k k k (1) - 2  
ai ( t ,s)  = f i ( t , s )  t -If!2)(t,s)P. ( s )  - P. . ( s )h  (t,s)rPm(t)h,(t,s) 2 1JP 3-4 1~ 4 

k k (1) - 2  
bi (t,s) = P. . ( s )h  ( ty s ) rPm( t )  

1J aj  

and, f rom (72)  and ( 5 9 ) ,  for  i > n  
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and 

Note: 

with j > 1, by symmetry,  s may be substituted so  that only the 

upper triangular elements of P are  used. 

The validity of the fi l ter ,  in the sense adopted herein, 

If any of the t e r m s  in ( 7 4 )  and (75) include a factor of s . .  
13 

j i  

k depends upon the charac te r i s t ics  of ak and b , which, in turn, 

a r e  given by (74) and (75). 

analysis is required to determine i f  a 

and uniqueness conditions. The quantity P occurs  quite often in 

the expanded equations. F r o m  ( 6 6 ) ,  P can be seen  to be bounded 

for  nonnegative definite P; since P is a covariance matr ix ,  it is  

requi red  to be nonnegative definite. The quantity c is  

essentially of degree n / 2  in s,  at l e a s t  when 

and violates sublinearity, but the product c T i s  sublinear, a s  

is implied by (70). Then, by inspection, the following conditions 

A cer tain amount of prel iminary 

k k and b satisfy existence 

k 

k 

-1  
k 

J. I P 1 becomes l a r g e ” ,  

-1  k 
k 

a r e  sufficient for  validity: 

1. f is twice differentiable everywhere,  such that 

each  fi, f!1), and f!2) is sublinear.  
1J 1J k 

2. h i s  twice differentiable everywhere,  such that 

h ( l ) ,  h“), and Ihl ( h  (2 )  1 a r e  bounded. 

::: 1 p 1 is the norm of P. 
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3. g is differentiable everywhere such that each 

( ' ) g ( ' )  is sublinear.  gijgke and g ijk pmn 

It is assumed f rom this point on that conditions 1 -3  a r e  met,  so that 

( 7 3 )  is a valid stochastic differential equation for the f i l ter .  

One of the conditions required in the derivation is  that P 

be nonnegative definite. 

solution to the P equation were truly the conditional covariance, 

the condition would be met  automatically, a s  noted above, because 

of the properties of a covariance matr ix .  However, in the present  

case ,  the solution to the P equation i s  mere ly  an approximation to 

the conditional covariance, and i s  not guaranteed to be semi -  

definite. At this point in the state of knowledge of stochastic 

differential equations, the problem of determining conditions 

under which the computed value of P is nonnegative definite is 

unsolved. The following pragmatic rule is suggested: If, in the 

course  of an  actual computation, P should fail to be nonnegative 

definite, the approximation must  be considered improper .  

If the f i l t e r  equation were  exact and the 

4.5 COMPUTATIONAL VALIDITY 

It has  just  been shown that the modified f i l ter  is valid for 

any k > 0; for  k = 0, the equations a r e  essentially the previous 

invalid fi l ter  equations. The resu l t s  to this point a r e  t rue  for 

the mathematical problem derived f r o m  the physical situation. 

It is shown in this section that when the mathematical  solution is  

transformed into a computational algorithm for use on a digital 
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computer,  the equation for  k = 0 is  a lso valid in the sense that 

t he re  is an equation for some k > 0 that computes the same values 

of d s / d t  as the equation for k = 0. 

It is interesting to note that while the vector s was con- 

s t ructed to allow the use of the vector fo rm of the theorem in 

Chapter 2, an actual computer program would probably be coded 

in t e r m s  of the vector s ,  since most differential equation inte- 

gration routines a r e  designed to integrate a f i r s t -order  vector 

equation, and since it is inefficient to compute the redundant e le -  

ments  of P. 

would entail writing the related ordinary differential equation 

The fo rma l  conversion of (73) to a computer algorithm 

k k - _  ds - a ( t , s )  t b ( t , s ) y  
dt  

where,  a s  in Section 3.2 dz /d t  is  taken a s  y,since y is now a 

physically measured  signal. 

It can  be seen  with l i t t le difficulty that for  k = 0 the f i l ter  

equation ( 7 3 )  reduces to the vector f o r m  of (50)  and (57 )  except 
::< (2 ) 

replaces  [gg ] / 2 ,  a s  discussed ea r l i e r  in  this that g (1),(1)0 

k k chapter.  Also, for fixed t and s, a and b a r e  continuous func- 

tions of k. Fur thermore ,  for a computer mechanization y is 

bounded and there is a difference threshold within which two 

numbers  are considered identical. Let  Y be the bound 

on y and let E be the difference threshold. 

ak and b , for a given t and s there exis ts  a K > 0 such that 

By the continuity of 

k 
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la" (t, s )  - ao(t, s ) l  t 

Moreover, since t and s a r e  

b K ( t ,  s )  - bo(t, s ) l Y  < f . ( 7 7 )  

also bounded for computer applications, 

there  exists a K > 0 such that (77 )  holds for all attainable t and s. 

Thus, the value of d s /d t  computed for 0 < k P K is identical to that 

computed for k = 0. 



5. SIMULATIONS 

5.1 INTRODUCTION 

There a r e  a number of reasons for the simulation study. 

F i r s t  of all,  despite the strong flavor of basic mathematics in the 

r e s e a r c h  into nonlinear fi l tering, the technique is essentially com-  

putational and i s  use less  i f  it i s  not mechanizable. 

excuse for studying nonlinear minimal -variance fi l tering is the 

hope that i t  is an improvement over other fi l tering approaches in 

the computational environment. Finally, there  is still some 

question about how to mechanize the integration. In par t icular ,  

i f  the integral  is mechanized as  an ordinary algorithm like 

Runge -Kutta o r  Adams, should the mathematical  approach s t i l l  

be used, o r  is  the mathematical approach good only for rectangu- 

l a r  rule integration ?” 

Secondly, the 

.Ir 

The numerical  investigation was conducted for eight dif- 

fe ren t  approaches to filtering, for two se t s  of dynamics, for  two 

measurement  schemes each. The two sys tems were  chosen such 

that one satisfied existence and uniqueness conditions for stochastic 

differential  equations while the other did not. No difficulties were 

‘’ Recall  the discussion beginning on page 18. 
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anticipated in connection with filtering for the second sys tem in the 

actual computer environment,”’ and none were encountered. 
.*, 

5.2 FILTER EQUATIONS 

Because of the large number of c a s e s  involved in the study, 

only f i r s t -order  sys tems a r e  considered. The f i r s t  sys tem is  

dx X - =  - 7 t v  
l t x  (D1) dt 

-1  (M11) y = tan x i -  w 

where v and w a r e  white noises. With ei ther  measurement  scheme 

(M11) o r  (M12), the overall  sys tem sat isf ies  existence and unique- 

ness.  The second system, which does not, is given by 

The filtering schemes are outlined below. F o r  the outline, 

f and h a r e  the sys tem nonlinearities a s  in (8) and (13). 

’“Because of the boundedness noted in Section 4.5,. the nonlinear 
functions a re  forced  to be sublinear a s  mechanized;  therefore  the 
apparent violation of existence and uniqueness conditions does not 
real ly  occur. 

The 



white-noise p rocesses ,  v and w, a r e  assumed stationary with 

2 2 
V V W' 

covariances CJ and ow, respectively so  that g = CJ and r = CJ 

A 
The subscr ipt  In1 denotes nominal, x is the est imate  of x, p is the 

approximate covariance,  and a prime denotes differentiation. Note 

that  for l inear  measurements ,  MlZ and M22, ce r t a in  t e r m s  vanish 

and there  a r e  only three  different f i l t e rs .  

1. Linear 

The l inear  fi l tering algorithm can be applied to a s e t  of 

equations l inear ized about an a pr ior i  nominal motion. 

equations, derived by Kalman and Bucy [23] a r e  

The 

-2 I A  - - f 1  2 t cW phh(y -hnx)  , 
dt - n 

- _  
dt 

2. Quasi-Moment Minimal-Variance 

This is the f i l ter  derived by Schwartz and Bass  [32], and 

independently by F i she r  [13I. 

A 1 1 i A  -2ph'(P)[y - h(2)  -$phl'($)l, 
A 
dx = f(x) t Tf (x)p t CJw dt 
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3. Truncated Minimal -Variance 

This is the fi l ter  derived by Bass ,  Norum, and Schwartz [2]. 

4. Modified Minimal -Variance 

This fi l ter  i s  a compromise between (81) and (82) which is 

based on the difference in the driving t e r m s  in the p equation. By 

dropping the driving t e rm,  the fi l ter  is s impler ,  y e t  the response 

falls  between the responses  for the two preceding filters. 

dx A 1 f i A  -2  t i  A 1 - = f(x) t Tf (x)p t ow ph (x)  [y - h(2)  - ~ p h " ( G ) ]  , dt 

A 

I A  -2 2 12 A 2 dp - 2pf (x) - aW p h (x) t oV . x -  

5. Maximum-Principle Leas t  Squares 

This f i l ter  is derived by Detchmendy and Sridhar [lo] for  

minimizing an  integr a1 -square -e s t imat ion-er  r o r  cr i ter ion,  using 

deterministic techniques. 

principle the minimization is "reduced" to a two -point boundary- 

value problem which is solved by an invariant imbedding technique 

using an  approximation to one boundary condition. 

By the use of Pontr iagin 's  maximum 
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Actually, (84) is a special  case  of the derivation in Detchmendy and 

Sridhar  [lo]; 

integrand, while (84)  corresponds to the particular s e t  of weight- 

ing functions that resu l t  in the Kalman fi l ter  for  l inear  dynamics. 

they used a rb i t r a ry  weighting functions in the c r i te r ion  

6. Dynamic Programming Least Squares 

This filter i s  derived by Cox [ 9 ]  for a c r i te r ion  which is 

s imi la r  to that used for the previous fi l ter .  The minimization is  

effected by dynamic programming using a quadratic approximation 

to the cost  function. 

A - 2  2 12 A 2 dp = 2pf1(x) - uw p h (x) f oV . 
dt 

A look at (85) shows that this filter i s  essentially equivalent to 

using l inear  fi l tering about the computed mean, a technique that 

had been used heurist ically previously. 

7.  Discrete  -Measurement Minimal -Variance 

This fi l ter  i s  derived by Jazwinsky [21] for a minimal-  

var iance c r i te r ion  under the assumption that the measurements  



a r r i v e  at isolated instants. 

limiting f o r m  for continuous measurements .  

The fo rm presented here  is the 

Since the evolution of the sys tem itself i s  considered continuous, 

the portion of the equations related to updating the est imate  in  the 

absence of measurements  agrees  with (81), (82), and (83). The 

loss  of the t e r m  in h ( x )  is due to the difference between the physi- 

cal  and mathematical approaches discussed in Chapter 2. 

derivation of (86), Jazwinsky uses  the approximation to the condi- 

tional density that is used to derive (82). 

I I  A 

In the 

8. Modified Discrete -Measurement Minimal -Variance 

This filter is related to (86) in the same  way that (81) is 

related to (82), i. e . ,  the conditional density is assumed to be 

Gaussian. 

The application of (80)-(87) to (78) and (79) is s t ra ight-  

forward and is not c a r r i e d  out herein.  

5 6  
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5.3 SIMULATION DETAILS 

The first simulation program was used for familiarization 

and prel iminary investigation of certain basic  questions. 

example,  the analysis discussed on p. 20 relating the white-noise 

model  to the simulated white -noise sequence was substantiated by 

showing that the f i l ter  performance de ter iora tes  drast ical ly  i f  the 

factor  of At is ignored. 

difference if the integration was performed by a Runge-Kutta 

scheme o r  rectangular rule. 

For 

Also, i t  did not s e e m  to make  an essent ia l  

The computer program that was finally used for the s imu-  

lation study included a simple rectangular - ru le  integration with 

constant step-size.  The use  of constant s tep-s ize  allows each 

f i l ter  to be compared on the basis of the s a m e  pseudo-random 

sequence. The random number generator i s  a combination of a 

s tandard uniform random sequence routine plus an approximate 

t ransformation to a Gaussian random sequence. 

two modes of operation: in one mode, only a single estimation is 

made  with a prespecified initial condition for the state:  in the other 

mode, s eve ra l  runs a r e  made  for random initial conditions, and 

the s ta t is t ics  of the estimation e r r o r s  a r e  computed. The output 

f rom the program is a computer-prepared plot showing the t ime-  

his tory of the f i l ter  response or the e r r o r  s ta t is t ics .  

show every  20th point with l inear interpolation between. 

The program has 

The plots 
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5.4 RESULTS 

As noted ea r l i e r ,  the simulation study was not intended to 

be a complete investigation of the computational charac te r i s t ics  of 

nonlinear f i l ters .  Two standard cases  were  used, which were  com-  

putationally docile when used with the s tep-s ize  chosen. F o r  both 

dynamical equations ( D l )  of (78) and (D2)  of ( 7 9 ) ,  the s tandard run  

consis ts  of 5000 points 0.001 second 

time of five seconds, with cr = 1 and u = 10. Only the initial 

condition differs. 

u rement  y for  the two standard cases .  

l inear  measurement ,  but the noise is so la rge  that there  is  not too 

much apparent difference between the l inear  and nonlinear 

measurements .  

apa r t  for  a total problem 

2 2 
V W 

Figures  1 and 2 show the state x and the meas-- 

The f igures  show the non- 

In the response to the s tandard inputs, there  is a l a rge  

difference between the response of the l inear  sys tems and the non- 

l inear  systems,  while the var ious nonlinear sys tems a r e  r e m a r k -  

ably s imilar .  

two standard cases.  As might be expected, l inear  measurements  

help the l inear system. 

relat ive e r r o r  performance of the nonlinear f i l ters  within the shaded 

region is different for the two cases .  To show that the resu l t s  in 

F igu res  3 and 4 a r e  not peculiar to the par t icular  initial condition 

and pseudo-random sequences, three representat ive f i l ters  were 

chosen for a s e t  of ten runs. 

shown in Figures  5 and 6 for  initial conditions with var iance one for 

F igures  3 and 4 show the estimation e r r o r  for the 

What might not be expected is  that  the 

The mean and mean-square e r r o r s  a r e  
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I .  

the f i r s t  ca se  and variance 1 / 4  for the second case .  

that  the e r r o r  s ta t is t ics  a r e  st i l l  quite close,  practically indis- 

tinguishable f rom a mean-square e r r o r  point of view. 

the relat ive e r r o r  performance of the chosen f i l ters  is qualitatively 

unchanged. 

It can  be seen 

Moreover,  

While on the topic of statist ical  runs,  it is interesting to 

note the comparison between the output of the p equation for an 

init ial  condition of one standard deviation and the mean-square 

e r r o r  fo r  ten runs fo r  one case ,  a s  shown in Figure 7 for  fi l ter  2, 

dynamics D1, and measurement  M11. Moreover,  it was found that 

the change in the mean-square e r r o r  for  a l a rge r  number of cases ,  

up to 50, while noticeable, was relatively small .  

The effects of changing the s ta t is t ics  of the random sequences 

a r e  s imi la r  for  all  the f i l ters ,  and a r e  intuitively reasonable. 

Changing uv has  little effect on the init ial  response,  though the 

higher uv the worse the ultimate following. 

ing uw slows the response noticeably without affecting the ultimate 

tracking. 

shown in F igu res  8 and 9. 

Contrariwise,  i nc reas -  

The e r r o r  responses  for f i l ter  2 with D1 and M11 a r e  

The runs,  mentioned ea r l i e r ,  demonstrating the co r rec t -  

nes s  of the noise model, show the effects of improperly matching 

the f i l ter  pa rame te r s  to the noise statist ics.  

mismatch  on x-x and p a r e  shown in F igu res  10 and 11. 

the curves shown, the actual pseudo-random inputs were taken 

f r o m  identical populations, only the f i l ter  pa rame te r s  varied. 

The effect of the 

A F o r  al l  
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Evidently a statist ical  mismatch can ser iously affect the performance 

of the fi l ter .  

f i l ter  is a good index of the performance, even when the s ta t is t ics  

a r e  poorly matched. 

It also appears that the value of p generated by the 

The final aspect that was studied on the computer is the 

Two approaches to sampling were effect of sampling the data. 

considered: sample-and-hold and pulse sampling. Fo r  the sample - 

and-hold runs,  the effective noise variance was obtained using a At 

equal to the sampling period, ra ther  than the computation interval. 

F o r  the pulse-sampling runs,  u 

vals  during which no measurements  were made. 

sampling were  applied to f i l t e r  Zwith dynamics D1 and measurements  

M11. 

expected, sampling i s  detrimental  to the initial response of the 

f i l ter ,  though ultimately the estimate set t les  in to the proper value. 

F r o m  the one case considered, sample-and-hold appears  some- 

what better than impulse sampling, which may  be due to the 

smoothing effect of the zero-order  hold. 

-1 was made  zero  for those in te r -  
W 

Both types of 

The response plots a r e  shown in Figure 12. As should be 

There i s  one problem in mechanizing the f i l t e rs ,  which has  

not yet been discussed, that  requires  much more  investigation: the 

effects of the fi l ter  pa rame te r s  and the s tep-s ize  on computational 

stability. F o r  some combinations of pa rame te r s  u and rW and 

initial covariance p (t ), the s tep-s ize  must  be made smal l  to 

stabil ize the computation during the init ial  portion of the run. 

reason for the instability i s  the l a rge  value of the derivatives and 

V 

0 

The 
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the consequent la rge  truncation e r r o r s  introduced in the integration. 

A part icular ly  insidious fo rm of computational instability a rose  in 

the course of the simulation study: it is possible to be in a condi- 

tionally stable region such that one pseudo-random sequence with 

a given s ta t is t ical  description resul ts  in a stable response,  while 

another sequence drawn f rom the same  population does not. How- 

eve r ,  because of the nature of the computational stability problem, 

it is mos t  effectively studied for  a par t icular  equation; general  

r e su l t s  a r e  difficult to find. 



6. SUMMARY AND SUGGESTIONS FOR FURTHER WORK 

6.1 SUMMARY AND CONCLUSIONS 

The preceding t reatment  of the problem of the construction 

of approximate continuous nonlinear minimal-var iance f i l t e rs  can 

be divided into three par ts .  

ductory in nature, and cover a general  background of the problem, 

the mathematical  p re l imina r i e s  required for the analysis,  and a 

detailed account of the previous work leading up to the dissertation. 

The f i r s t  th ree  chapters  a r e  intro-  

Chapter 4 constitutes the second par t ,  which is the con- 

struction of a mathematically valid fi l ter .  Here,  the t e r m  

"mathematically valid" implies that the stochastic differential 

equation for the filter satisfies existence and uniqueness condi- 

tions, and also that the fi l ter  i s  derived on the basis  of an approx- 

imate  dynamical representation that sat isf ies  the same  conditions. 

Since previous derivations violate the requirements  for validity, 

cer ta in  modifications a r e  necessary ,  particularly in the way the 

differential equation for the sys tem is approximated. Then, given 

a valid formulation for the f i l ter ,  i t  is shown that in the actual 

computational environment 

var iance filter is also valid in the sense that there  exis t  mathe-  

matically valid f i l t e r s  that a r e  computationally identical to it. 

the nonvalid quasi  -moment minimal - 

74 
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The final part ,  presented in Chapter 5, i s  a computational 

investigation of nonlinear filtering, including f i l t e rs  derived by 

different techniques and for other c r i te r ia .  Apparently, nonlinear 

filtering is superior  to l inear filtering, although no one nonlinear 

f i l ter  offers any clear-cut  advantage over any other f rom a pe r -  

formance point of view. 

f r o m  a continuous model a r e  quite amenable to sampled-data use.  

It also appears  that the f i l ters  derived 

The mathematical  problem solved in Chapter 4 a r i s e s  f rom 

the probabilistic cr i ter ion and the white-noise model; i t  does not 

appear in the s ta t is t ical  approaches which use  a determinis t ic  

c r i te r ion  and which need no postulate about the form of the noise. 

The re  does exist  the problem of choosing a weighting mat r ix  in the 

c r i te r ion  integrand, but that is not a t  a l l  a theoretical  problem. ::: 

Moreover,  in view of the success of the heurist ic nonlinear f i l ter  

obtained by continuously updating the nominal for the l inearization 

i n  the p equation and using a nonlinear updating in  the x equation, it 

is difficult to justify f r o m  a practical  point of view all  the mathe-  

matical  difficulties that a r i s e  using the probabilistic nonlinear 

approach. Granted, the computer investigation reported in Chapter 5 

is insufficient evidence to support any final conclusion, but it does 

offer food for thought. 

A 

“It appears  that the covariances of the equivalent white -noise p ro -  
c e s s e s  a r e  a good choice fo r  the weighting mat r ices ,  even though 
the white-noise assumption is not made. 
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6.2 FURTHER WORK 

The derivation in Chapter 4 used a truncated quasi-moment 

expansion for the conditional density, in which only the mean and 

covariance were included, plus a modified second-degree expansion 

for the system nonlinearity. It would be interesting to extend the 

derivation to include higher quasi-moments and higher -degree 

expansions for the system, should the probabilist ic approach still 

be of interest .  

No derivation, probabilistic o r  s ta t is t ical ,  s eems  to allow 

for a state-dependent measurement  noise, yet there  a r e  pract ical  

situations in which the noise is state-dependent. The variation of 

the noise with s ta te  could be included heurist ically,  but i t  would be 

desirable  to include the effect in a theoretical  derivation. 

In view of the comments a t  the end of the previous section, 

an attempt should be made to compare the various approaches 

analytically. 

on a limited sample of computer runs! 

It i s  not a t  all satisfying to base a general  conclusion 

A number of a r e a s  a r e  open f o r  numerical  investigation, 

the most  important being the numerical  stability of the equations. 

Another problem is  the simulation of higher o r d e r  problems,  and 

a third i s  a study of the effects of modeling e r r o r s .  
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